
SURFACE WAVES AND STABILITY OF TANGENTIAL VELOCITY DISCONTINUITY 

ON A SOLID--FLUID BOUNDARY 
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Solutions of the Rayleigh-wave type on the boundary of an elastic half-space and 
a moving layer of ideal fluid are obtained. The limiting cases of zero flow ve- 
locity and a tangential velocity discontinuity in the fluid were investigated in 
[1-3]. In [4] the order of magnitude of the critical flow velocity was estimated. 
An increase in the velocity scales used in engineering and experimental practice 
(see [5], for instance) has aroused interest in a more thorough analysis of the 
effect. 

i. In a Cartesian system of coordinates (x, z) the region 0 < z < h and the region 
z < 0 are occupied by an ideal compressible fluid and an elastic medium, respectively. The 
initial (undisturbed) state of this mechanical system is characterized by zero values of all 
the velocity and stress components, except the x component of the velocity at 0 < z < h, 
which is constant and equal to U, and pressure Po = const > 0 at 0~ z <--oo. In other 
words, there is a constant flow of fluid over the elastic half-space under an external pres- 
sure Po. 

We will represent the plane disturbed state by three functions -- velocity potentials: 
the longitudinal ~ and transverse ~ in the elastic material and ~ in the fluid. They will 
satisfy the wave equations 

~ = c~Aq~, o2* = c~A~, z < O, 
Ot~ ~ (i.I) (o; (o o o) 

N ~=c]A~,  0 < z < h  N = ~ + U ~ ,  

where Cx, ca ,  and c3 a r e  c o n s t a n t s  h a v i n g  the  p h y s i c a l  s e n s e  o f  wave p r o p a g a t i o n  v e l o c i t i e s .  

We f o r m u l a t e  the  boundary  c o n d i t i o n s  o f  the  p rob lem.  The components  of  the  v e l o c i t y  
d i s t u r b a n c e s  (u,  v i n  the  e l a s t i c  medium and u ' ,  v '  in  the  f l u i d )  a r e  c o n n e c t e d  w i t h  t he  po-  
t e n t i a l s  in the following way" 

u = acp l s z  + a~lOz ,  v = ar - a ~ f a z ,  

u '  = a ~ / a x ,  v '  = a ~ / a z .  

Following [3], we put the equation of the disturbed interface in the form z = n(x, t). 
Then, when z = 0 

v ---- a~ /cgz  - -  cg~ /ax  ---- cgq/,3t, v" -~  c9~/c9z -~  D ~ I / D t .  (1 .2 )  

The remaining limitations are imposed on the stress disturbances 

p = 0  at z - ~ h ,  p-------~, ~ = 0  at z----O, (1.3) 

where p is the pressure disturbance in the fluid layer; o = o z, r are the disturbed 
components of the stress tensor in the elastic medium. 

The stresses of interest to us can be expressed in terms of potentials on the basis of 
the following relations, which are valid for the plane problem: 

\~~ 070,/ 
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ot = pc] L2 = -- ~ az 2 O-'~J' ~ P 8a(v' 

where p, p' are the densities of the solid and fluid, respectively. 

We seek the solution of problem (1.1)-(1.4) in the form of a plane monochromatic sur- 
face wave propagating along the x axis, so that the dependence of each sought function on x, 
t is determined by the factor exp[ik(x -- ct)]. For the potentials we write the expressions 

(~, ~, ~) = (~ ,  r ~) exp [ ik(x - -  c o l .  ( 1 . 5 )  

The r e q u i r e m e n t  o f  " s u r f a c e n e s s "  o f  t h e  wave  m e a n s  t h a t  

~I(Z) --">" O, lpl(Z ) --)" 0 when z --~ - -oo .  (1.6) 

Substituting expressions (1.5) successively in Eqs. (i.i) we obtain equations of the 

t yp e 

d2(p1 
dz2 k2r~r 1 = 0 . . . . .  

w h o s e  s o l u t i o n s ,  w i t h  c o n d i t i o n s  ( 1 . 6 )  t a k e n  i n t o  a c c o u n t ,  a r e  t h e  f u n c t i o n s  

(Pl (z) = A exp (krz), *1 = B exp (ksz), 

~l(z) = C exp (kqz) -F D exp (--kqz),  

where 

(1.7) 

= ( 1  - = ( t  - q = ( 1  - - 

with choice of branches Re r > 0, Re s > 0, Re q > 0. 

The constants A, B, C, and D, and also the velocity of propagation of the surface wave 
c are determined from the boundary conditions. We replace differentiation with respect to t 

in (1.2), (:[.4) by multiplication by --ikc or ik(U -- c). Eliminating n from conditions (1.2) 
we obtain the kinematic no-flow condition in the form 

(c - -  u ) ( o ~ / a z  - -  a ~ / a x )  = ca~/az .  ( ! .  8) 

Conditions (1.3) can also be rewritten in terms of ~, 4, ~, by eliminating o, T, p with 
the aid of (1.4). Substitution of (1.5), (1.7) into these conditions and (1.8) leads to the 
system 

(c - -  U)[C exp (khq) ~., D exp (--khq)] = O, 

2irA + ( i  ~- s~)B = 0, ( 1 . 9 )  

9c~ [(l -F s 2) A - -  2isB] = p'c (U - -  c) (C i D), 

(c - -  U)(rA - -  iB) = cq(C - - D ) .  

Nontrivia! solutions of this system of homogeneous linear equations for A, B, C, and D 
exist only at certain values of c. The latter are the roots of the dispersion equation, 
which is obtained by equation of the determinant of system (1.9) to zero. 

We single out the case U = c. In this case p ~ O, and the form of the dispersion equa- 
tion corresponds to that of the Rayleigh equation in the case of free surface of the elastic 
material 

(1 q- s2) 2 = 4rs. 

It has a single positive root c 2 = c~. Thus, if the flow velocity is CR~ the fluid has 
no effect on the surface wave propagating downstream in the elastic medium. 

In the general case we obtain a transcendental equation for c in the form 

p'rc 2 ( e -  U) ~ th  (khq) = pc~q [ 4 r s -  (1 § s2)21. (1 .  ! 0 )  

2 .  We c o n s i d e r  some s p e c i a l  c a s e s .  We n o t e  t h a t  a l l o w a n c e  f o r  t h e  c o m p r e s s i b i l i t y  o f  
t h e  m a t e r i a l s  h a s  l i t t l e  e f f e c t  on  t h e  c h a r a c t e r i s t i c s  o f  t h e  s u r f a c e  w a v e s .  F o r  i n s t a n c e ,  
f o r  t h e  R a y l e i g h  wave  a l o n g  t h e  f r e e  s u r f a c e  o f  t h e  e l a s t i c  medium we h a v e  [6]  

c R = ~c 2, 0.92 < ~ ( v )  < 0 . 9 5 5  when0.25 < v  < 0 . 5  

(v is the Poisson ratio). 
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Hence, the basic qualitative and quantitative behavior of the principal roots of (i.i0)# 
can be investigated by analyzing the limiting case 01-+oo, 0~-+oo. In this case (i.i0) is 
simplified to 

4 [4s - ( t  + s2)~l, xc ~ (c - -  U) 2 = c~ ( 2 . 1 )  

w h e r e  u = (p ' /p) t a n h  ( k h )  i s  t h e  r e d u c e d  d e n s i t y .  

When c2 + 0 the asymptotic expression (2.1) has the form 

•  U p  + c ~ = O. 

The roots of this equation 

c = g V ~ V ~ + _ -  O / ( i  + ~) 

i n c l u d e  a r o o t  w h i c h  g i v e s  a s o l u t i o n  t h a t  i n c r e a s e s  i n  t i m e .  T h i s  i s  a known  r e s u l t  o f  i n -  
stability of the tangential velocity discontinuity in the fluid [3]. 

The replacement b = c2/c, a = U/c2 brings (2.1) to the form 

u(a12 )* (a  -1  - -  b) ~ - t - ( b  ~ - -  1/2) * = ba(b 2 - -  1) t/2" ( 2 . 2 )  

Squaring both sides of (2.2) we obtain an algebraic equation of the sixth degree in b. 
The set of roots of the latter can be reduced in accordance with (2.2) and the requirement 
that Re s > 0. 

The roots were calculated on a computer. The calculations showed that there is an in- 
terval 0~=~.~.(~), in which there are only two real roots of (2.2). To these two roots 
at U = 0 there correspond two Rayleigh waves propagating with velocities of equal__ magnitude 
but opposite sign. When U~0 this symmetry is destroyed. Beginning at = ----~2/~, both ve- 
locities become positive, and when = = =.(~) (the curve from the calculations) the veloci- 
ties of the two waves are the same (Fig. i). Thus, the upstream wave is greatly distorted: 
The flow "drives" it in the opposite direction. On the wave traveling downstream, however, 
the flow has relatively little effect. 

Curve ~ = a , ( •  (Fig. 2) delimits the region of existence of stable solutions (Ray- 
leigh waves) in the phase plane of the variables a, ~ . When e>=.(~) Eq. (2.2) has two 
complex-valued roots in place of the previous two real roots. One of them gives a solution 
that increases exponentially in time. The index of the power increases monotonically from 
zero at ~ = a,(• to the value corresponding to the case c2 = 0 when a § 0. 

Note. For a real (viscous) fluid the above treatment will be applicable if d<<%, 
where d is the thickness of the boundary layer, % = 2v/k is the wavelength of the disturbance 
and, since d/l ~ Re-~/2 (Re is the Reynolds number), this reduces to the requirement that 
REX/2 >>i. This limitation is sufficient to ensure that the boundary condition for T is ap- 

proximately satisfied. 
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STABILITY OF JETS OF AN IDEAL PONDERABLE LIQUID 

V. I. Eliseev UDC 532.516 

The stability of jets of an ideal liquid was investigated in [1-4], where it was as- 
sumed that t:he undisturbed flow is parallel, and the velocity of the liquid in the jet is 
constant. In this paper we examine the stability of jets of ponderable liquids within the 
framework of linear theory, taking into account the effect of the surrounding medium, which 
is also ass~ed to be ideal. The ponderability of the liquid is manifested in the deviation 
of the jet boundaries from the parallel direction and the dependence of the velocity on the 
longitudinal coordinate. These features can be taken into account as, for instance, in the 
theory of stability of laminar boundary layers, where the flow is assumed to be quasi-paral- 
lel. In this case the dependence of the jet thickness and velocity in the jet on the longi- 
tudinal coordinate can be regarded as parametric. In this paper we examine a significantly 
nonparallel :flow and, hence, for determination of the stability characteristics of a jet flow 
in this case we propose an asymptotic method. 

i. Basic Equations. The basic equations have the form 

O2@i k a~i  020i O, i = 1, 2, 
. Ox 2 + r ' ~ ' r  -~ Or-"-~-~ 

"-ST + Pi 2 -T gx  = const~, 

(z.z) 

where ui = 8~])i/#x, vi = OaP~/Or are the projections of the velocity on the x and r axes, Pi is 
the pressure, Oi is the density; k = 0 for a plane jet, k = 1 for an axis}nnmetric jet; the 
subscript 1 relates to the flow parameters in the jet, and the subscript 2 relates to the 
surrounding medium. On the jet boundary the conditions 

v~ = Oa/Ot + u~Oa/Ox, Pl  - -  P~ = a ( i / R  + k/a) ,  

R = - -  [1 + (a~/ax)2] 8/2 
O2 a / Ox ~ 

a r e  f u l f i l l e d ,  w h e r e  a i s  t h e  r a d i u s  (k  = 1)  o r  h a l f w i d t h  (k  = O) o f  t h e  j e t ;  o i s  t h e  c o e f -  
f i c i e n t  of surface tension. 

Henceforth, we will deal with the problem in region 1 in the variables ~ = x/ao, ~----Ut/ao, 
n = r/co, and in region 2 in the variables ~, T, and N = (r--a)/ao~ m + k, where ao is the linear 
scale; U is the velocity scale; m is a coefficient which will be determined below. Keeping 
within the framework of linear theory, we put the solutions of Eqs. (i.i) in the form 

cD~ = aoU ( ~  + q~is), P i  = p l U  2 (P~ + Pi6), alao = y ,  + 6, 

where the first terms on the right-hand sides correspond to undisturbed motion, and the sec- 
ond terms to disturbed motion. 

In the new variables the equations for the disturbed motion and the boundary equations 
have the form (the velocity of the ~surrounding medium is zero) 
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